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Electronic localization is numerically studied in disordered bilayer graphene with an electric-field-induced
energy gap. Bilayer graphene is a zero-gap semiconductor, in which an energy gap can be opened and con-
trolled by an external electric field perpendicular to the layer plane. We found that, in the smooth disorder
potential not mixing the states in different valleys �K and K� points�, the gap opening causes a phase transition
at which the electronic localization length diverges. We show that this can be interpreted as the integer
quantum Hall transition at each single valley, even though the magnetic field is absent.
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Since the experimental discovery of monatomic graph-
ene,1–3 the electronic properties of graphene-related materials
have been extensively studied. The graphene bilayer, which
is also experimentally available,2,4,5 was shown to have a
unique band structure distinct from monolayer, where the
conduction and valence bands with quadratic dispersion
touch at K and K� points in the Brillouin zone.6 The transport
properties of the bilayer graphene have been studied
experimentally4,7,8 and also extensively studied in theor-
ies.9–13 The quantum correction to the conductivity, which is
important in the low temperature, was studied for monolayer
graphene14,15 and for bilayer.7,16 A unique property of bilayer
graphene is that an electric field applied perpendicularly to
the layers opens an energy gap between the electron and hole
bands.6,17–20 The transport property of the gapped bilayer
graphene was also studied.21 The electric-field-induced en-
ergy gap was observed in recent experiments.5,22

When the impurity potential is smooth compared to the
atomic scale and the intervalley scattering is negligible, we
can treat two valleys �around K or K�� as independent sub-
systems. The sub-Hamiltonian within each valley generally
has no time-reversal symmetry in itself since the time-
reversal counterpart of the states at K exists at K�.14,16 In
bilayer graphene with a gap, interestingly, each sub-Hamil-
tonian has nonzero Hall conductivity even in zero magnetic
field. The monolayer graphene can also have an energy gap
and the corresponding Hall conductivity when the sublattice
symmetry is broken,23,24 while it cannot be controlled extern-
ally.25

The single-valley Hall conductivity can never be directly
observed since it is exactly canceled by the contribution from
the other valley. In this paper, however, we find that this
quantity strongly influences the electron localization proper-
ties, and this may be observed in the longitudinal conductiv-
ity. We show that, when the system is under smooth random
potential not mixing valleys, the perpendicular electric field
causes a phase transition at which the localization length
diverges. We find that this is interpreted as the quantum Hall
transition at each single valley, where the single-valley Hall
conductivity changes from one integer to another. To dem-
onstrate this, we numerically calculate the localization length
in disordered bilayer graphene with electric fields to actually
show that the localization length diverges at a certain field
amplitude. We then calculate the single-valley Hall conduc-
tivity and show that the delocalization is actually associated

with the transition between different quantum Hall phases.
Bilayer graphene is composed of a pair of hexagonal net-

works of carbon atoms, which include A and B atoms on the
bottom layer and A� and B� on the top. As shown in Fig. 1,
both layers are arranged in the Bernal stacking, where A
atoms are located directly below B� atoms.6 The low-energy
spectrum is given by the states around K and K� points in the
Brillouin zone. Neighboring A and B� sites are coupled to
create high-energy bands, and remaining A� and B sites form
the low-energy bands touching at the zero energy. The effec-
tive low-energy Hamiltonian around K point reads6

H0
K =� �

�2

2m� �kx − iky�2

�2

2m�
�kx + iky�2 − � � , �1�

which operates on a wave function �FA�
K ,FB

K�, where FX
K rep-

resents the value of the envelope function of K point at site
X. Here � and −� are the external electrostatic potential at
the top and bottom layers, respectively, due to the applied
electric field and m� is the effective band mass defined by
m�=�1 / �2v2�, where �1 is the coupling parameter for the
vertical bonds between A and B� atoms, and v is the velocity
of the monolayer graphene.6 We assume that � and vk are
much smaller than �1 and neglect the terms more than the
third order in � /�1 and vk /�1. The band structure of a real
bilayer graphene is trigonally warped due to the extra cou-
pling parameter between A� and B �Refs. 6 and 9� but is
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FIG. 1. Atomic structure of the bilayer graphene. +� and −�
represent the potential of the top and bottom layers, respectively.
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neglected here for simplicity. The eigenenergy of Eq. �1� is
given by

�ks = s���2k2

2m� �2

+ �2 �2�

with s=� and k=�kx
2+ky

2. The energy gap extends between
�= ��. The effective Hamiltonian for K� can be obtained by
exchanging kx+ iky and kx− iky, giving the basically same
spectrum. In the absence of �, the density of states �DOS�
becomes constant, �0=m� / �2��2� per valley and per spin.

For the disorder potential, we assume that the length scale
is much longer than the atomic scale and neglect the inter-
valley scattering. This should be valid as long as the phase-
coherent time is smaller than the intervalley scattering
time.14,16 We also assume that the disorder length scale is
shorter than the typical wavelength of 2� /k with k being the
wave number from K or K� points, so as to be modeled as a
short-ranged potential within the valley decoupled Hamil-
tonian. This is then expressed as9

V = �
i

ui	�r − ri��1 0

0 1
� . �3�

We assume an equal amount of positive and negative scat-
terers ui= �u and a total density per unit area nimp. At �
=0, the energy broadening 
=� / �2�� becomes independent
of the energy in the weak disorder limit and is expressed by9


 =
�nimpu

2�0

2
.

This will be used as the energy scale characterizing the dis-
order strength. We also introduce unit wave number k0 as
�2k0

2 / �2m��=
 /2 and unit length �0=2� /k0.
The single-valley Hamiltonian with disordered potential

HK=H0
K+V belongs to the unitary symmetry class when � is

nonzero. It becomes the orthogonal class only at �=0 as we
have the relation 
xHK
x= �HK�� with the Pauli matrix 
x.
This is an effective time-reversal symmetry within a single
valley and should be distinguished from the real time-
reversal symmetry connecting K and K� which always exists
at any values of �.

The single-valley Hamiltonian has a nonzero Hall con-
ductivity when ��0. This is estimated by the Kubo formula


xy =
�e2

iS
�
�,�

f���� − f����
�� − ��

	�
vx
��	�
vy
��
�� − �� + i	

, �4�

where S is the area of the system, vx and vy are the velocity
operators, 	 is the positive infinitesimal, f��� is the Fermi
distribution function, and 
�� and �� describe the eigenstate
and the eigenenergy of the system, respectively.

By applying this formula to the ideal K-point Hamiltonian
H0

K at zero temperature, we obtain


xy
K = �

e2

h

�


�F


�F
 � 
�


e2

h
sgn��� 
�F
 � 
�
 
 �5�

with sgn�x�=x / 
x
. The result for K� point is given by 
xy
K�

=−
xy
K , so that the net Hall conductivity is exactly zero as it

should. 
xy
K at the energy gap is quantized into different val-

ues in the negative and positive �’s. When �F is fixed to zero
and � is continuously changed from negative to positive, we
have the Hall conductivity change from 
xy

K =−e2 /h to e2 /h

and from 
xy
K�=e2 /h to −e2 /h.

The jump of the Hall conductivity can be intuitively ex-
plained by the consideration of the energy spectrum in the
magnetic field. In a uniform field B, the Landau-level energy
at K is obtained by substituting k in Eq. �1� with k+eA /�
with the vector potential A= �0,Bx�.6 This results in

�s,n = s����c�2n�n − 1� + �2 �n � 2� ,

�0 = �1 = − � , �6�

where �c=eB /m� and s=� represents the electron and hole
bands. The energy spectrum is plotted as a function of � in
Fig. 2. We have doubly degenerate Landau levels �0 and �1
at E=−�, which move from the electron band down to the
hole band as � increases. When the Fermi energy is fixed at
EF=0 and � is changed from negative to positive, those two
Landau levels cross EF and therefore give a change in 
xy

K by
2e2 /h, which is twice as large as a Hall conductivity quan-
tum. It is important that this discontinuity in 
xy

K is not dis-
solved in the limit of B→0, and it is actually consistent with
the discussion above in zero magnetic field. For K� point, we
have �0=�1= +�, leading to the opposite sign of the Hall
conductivity change.

Now we numerically calculate the electronic states in the
disorder potential by exactly diagonalizing the Hamiltonian
matrix. We consider a finite square system with L�L de-
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FIG. 2. Energy spectrum Eq. �6� plotted against � at K valley in
the bilayer graphene with a uniform magnetic field.
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scribed by the K point Hamiltonian HK=H0
K+V, imposing a

boundary condition with phase factors exp�i�x� and exp�i�y�
for x- and y-directions, respectively. To make the matrix fi-
nite, we introduce the k-space cutoff kc=6k0, which corre-
sponds to �c=18
.

To investigate the localization property, we calculate the
Thouless number g, which is the ratio of the shift �E of each
energy level due to the change in the boundary condition to
the level spacing �L2��−1 with � being the density of states
per unit area.26 We estimate the energy shift by �E
=�	
�2E��� /��2
�, where E��� represents the eigenenergy as
a function of the boundary phase �=�x with fixed �y and 	 �
represents averaging over different levels in a small energy
region around the energy � in question. The localization
length Lloc is estimated by fitting the results to g�L�
�exp�−L /Lloc�. When g�1, g is approximately related to
the longitudinal conductivity 
xx by 
xx��e2 /��g.26 We also
calculate the Hall conductivity by substituting the eigenstates
of the disordered system to the Kubo formula �4�. For every
quantity, we take an average over a number of samples with
different configuration of the disorder potential and boundary
phase factors �x ,�y.

The absolute value of 
xy generally depends on the
k-space cutoff. This is because 
xy can be expressed as the
summation of the contribution from all the occupied states
below the Fermi energy unlike 
xx which only depends on
the states at the Fermi energy. In the clean limit, the cutoff at
�= ��c leads to overall shift of 
xy��� by a constant
�e2 /h�� /�c, which is the contribution from the missing states
out of the cutoff. 
xy in the disordered system has a similar
shift which vanishes in the limit of �c→0. However, as long
as �c is much larger than the energy broadening 
, it hardly
changes the function form of 
xy��� around �=0 except for
this small constant.

Figure 3�a� shows the DOS in disordered bilayer graphene
with various �’s at fixed 
. The energy axis is scaled in units
of 
. As � increases, the DOS at the zero energy monotoni-
cally decreases as expected, while the disorder potential fills
the energy gap with some states. In Fig. 3�b�, we plot the
Thouless number g at zero energy as a function of � for
several system sizes. We naively expect that the conductivity
at zero energy monotonically decreases in increasing � since
the DOS becomes smaller, but this is not the case here. At

every system size, g goes up first when � starts from 0 and
then changes to decrease at ��0.8
. Significantly g be-
comes independent of the system size around the peak, while
in other regions it drops exponentially as the system size
increases. This suggests that the electronic state at zero en-
ergy is localized both in small and large �’s but delocalized
only at ��0.8
. We calculate g also for other energies and
obtain the localization length Lloc as a function of energy
from its size dependence. In Fig. 4, we plot 1 /Lloc against
energy for several values of �. As � increases from zero,
1 /Lloc gradually decreases, and the value around �=0
reaches almost zero �i.e., the states extended� at ��0.8
.
The center value recovers to nonzero again in even larger �,
and the peak grows rapidly as � increases; the states at the
gap region become localized more and more.

The corresponding plots for the single-valley Hall con-
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FIG. 3. �a� Density of states as a function of energy in bilayer
graphene with several �’s at fixed 
. �b� Thouless number g at zero
energy plotted against �.
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FIG. 4. Inverse of the localization as a function of energy in
bilayer graphene with several �’s.
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FIG. 5. Hall conductivity of a single-valley K Hamiltonian of
bilayer graphene with several �’s plotted against the energy.
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ductivity 
xy
K are shown in Fig. 5. 
xy

K becomes completely 0
at �=0 �not shown�, and the value generally goes up as �
increases. At each single �, we notice that 
xy

K moves in a
specific direction as the system size L expands. At �=0.4
,

xy

K decreases in all the energy as L increases. At �=1.6
, on
the contrary, 
xy

K around �=0 evolves in the upward direc-
tion, oppositely. The critical value of � where the 
xy

K

switches its evolving direction depends on the energy. At E
=0, this is close to � /
=0.8.

In the integer quantum Hall effect, the Hall conductivity
in the infinite system is quantized as long as the states at the
Fermi energy are localized.27 In finite-size systems, the Hall
conductivity averaged over disorder configurations generally
takes noninteger values, while it gradually approaches the
quantized value as the system size expands.28 Therefore the
quantized Hall conductivity in the infinite system can be es-
timated from the scaling behavior of finite-size values. In the
above results, we expect that the region of decreasing 
xy

K

becomes the Hall plateau with 
xy
K =0 and that of increasing


xy
K becomes the plateau with e2 /h in an infinite-system size.

The point where the 
xy
K switches the scaling dependence can

be regarded as the phase transition between the different Hall
phases 
xy

K =0 and 1. Significantly this point coincides well
with the divergence of the localization length Lloc in Fig. 4.
The feature is most striking at �=0.8
, where 
xy

K at �=0 is
about to change its size dependence and Lloc at the center is
also near divergence. This is a consistent result since the
electronic states must be delocalized at the critical point
separating different Hall plateaus.27

Indeed, when the energy-gap width is much larger than
the disorder strength, i.e., � /
�1, we reasonably expect
that 
xy

K around zero energy is quantized at e2 /h, the midgap
value in the clean limit, since the gap remains almost intact
in the weak disorder. When the energy gap is small enough,
that is, � /
�1, on the other hand, it is natural that 
xy

K

vanishes to zero as in the zero-gap case since the effect of �
is completely washed out by the strong disorder. It is then
inevitable to have the phase transition at the intermediate
value of � /
, which is presumably of the order of 1, while
the factor may depend on the specific disorder model.

At ��0.8, we have two critical energies which separate
upward and downward moving regions in 
xy

K in Fig. 5. The
localization length in Fig. 4 is huge around the correspond-
ing energies, so that it becomes harder to specify the critical
points out of them due to the numerical error. Figure 6 shows
the phase diagram speculated in the infinite system, where
each phase corresponds to the Hall plateau with quantized

xy

K . We determine the phase boundary by taking points
where 
xy

K changes its moving direction. The dashed curves
separating the phases are guides for eyes. The phase diagram
is symmetric with respect to �=0, while the sign of the Hall
conductivity is opposite between negative and positive �’s.

We cannot eliminate the delocalized states as long as K
and K� valleys are decoupled in the following sense: In the
clean system, as previously discussed, the single-valley Hall
conductivity 
xy

K at the gap is quantized at −1 and 1 �in units
of e2 /h� at negative and positive �, respectively. In the dis-
ordered system, we expect that 
xy

K at the gap remains quan-
tized when the gap width is large enough compared to the
energy broadening due to the disorder. Thus the Hall conduc-
tivity at a fixed Fermi energy definitely changes from −1 to 1
when � changes from −�0 to +�0 with sufficiently large �0.
This requires that the delocalized states appear at that energy
somewhere between −�0 and +�0 because otherwise the Hall
conductivity stays constant.27 The present calculation indeed
suggests that there are two delocalized points of � �negative
and positive� at each fixed energy.

The delocalized states would disappear in presence of the
short-ranged disorder with atomic length scale, which in-
duces intervalley coupling between K and K� and makes the
original time-reversal symmetry effective. The localization
length at the phase boundary is expected to diverge as the
intervalley scattering rate goes to zero. The trigonal warping
effect due to the extra hopping parameter, which is also ne-
glected here, does not kill the delocalized states since it does
not mix the valleys, while it generally weakens the electron
localization at �=0.16

In this paper we proposed that the external electric field
applied to the bilayer graphene causes a phase transition at
which the localization length diverges. The transition can be
interpreted as an analog of quantum Hall transition at each
single valley. While the actual Hall conductivity is never
directly observed, it may be possible to observe the diver-
gence of the localization length in a temperature �T� depen-
dence of the conductivity 
xx as in the conventional integer
quantum Hall effect.29 Figure 3�b� can be approximately
viewed as plots of 
xx at different T’s when we use a relation

xx��e2 /��g and regard L as the phase-coherent length at T.
When the system goes through the phase transition, 
xx ex-
hibits a peak at the phase boundary and its peak width be-
comes narrower as the temperature is lowered.29 To observe
this, the temperature must be low enough that the phase-
coherent length exceeds the typical localization length lB.
Our calculation is based on a typical disorder model used in
theories, while it may not describe some specific situations in
the real bilayer graphene currently available, which is sup-
posed to include puddles �long-range inhomogeneity� or
impurity-bound states described by the variable-range hop-
ping model. We leave to the future work the study on those
effects on the present phenomenon.
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FIG. 6. Hall plateau diagram against � and energy E. Dots
represent the critical energies estimated from the size dependence of

xy

K . Dashed curves are guides for the eyes for the phase boundary.
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